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The temperature at a nonstationary sliding friction contact is de- 
termined with the aid of a Volterra-Fredholm type integral equation 
of the second kind. In order to solve this equation on a standard ana- 
log computer transformations necessary to permit the use of the method 
of successive approximations are introduced. 

In evaluating the wear  r e s i s t ance ,  ant i se iz ing  p r op -  
e r t ies ,  and surface  s t rength  of rubbing par t s  it is 
very  impor tant  to know the t empera tu re  d is t r ibut ion  
in the par ts  and, in par t icu la r ,  the t empera tu re  at the 
sl iding contact i tself.  

The d iscre te  e lements  of the actual contact a rea  
a re  the sources  of f r ic t ion heat. If for the purposes 
of s impl i f ica t ion these d i sc re te  e lements  are  replaced 
with continuous surface  layers  and these boundary 
layers  are  t rea ted as a s ingle hea t -genera t ing  layer ,  
then the the rmal  problem can be represen ted  in in -  
tegra l  form with a pa r t i cu la r  solution in the form of 
single and doub le - l aye rpo ten t i a l s .  This r ep resen ta t ion  
makes it possible  to use not only the methods of 
mathemat ica l  physics but also mathemat ica l  s imu-  
lation on an analog computer .  

Let the rubbing par ts  cons is t  of a s l ider  bear ing  
and a rotat ing shaft. This sys t em is formal ized  as 
two cyl indr ica l  ha l f -spaces  in contac.t along the gene r -  
a tors .  The heat source  is the contact region s 
created by ve ry  thin surface layers  of the bear ing  
and the neck of the shaft in the a rea  of contact.  The 
contact region s moves at constant  speed. The contact 
is nonsta t ionary.  This nons ta t ionar i ty  is due ei ther  
to the nons ta t ionar i ty  of the re la t ive  slip velocity u or 
to the nons ta t ionar i ty  of the shear  s t r e s s  ~ or to the 
nonsta t tonar l ty  Of u and T together  [1]. 

The thermophysica l  cha rac te r i s t i c s  of the rubbing 
mate r i a l s  a re  assumed to be different,  i . e . ,  t h e t h e r -  
mal eonduetivi t ies  of the bear ing  and shaft ma te r i a l s  
are  not equal (X t ~ X~), jus t  as the i r  specific heats  
(el ~ c 2) and specific weights (3/1 ~Y2) are  different.  
There  a re  no heat losses  to the ambient  medium,  i . e . ,  
the noncontact ing sur faces  a re  adiabatic.  

It is requi red  to de te rmine  the t empe ra tu r e  T di -  
r ec t ly  at the s l iding contact and the t empe ra tu r e  
d is t r ibut ion  over  the rubbing par t s .  

We will  se lect  a r ec tangu la r  coordinate  sy s t em 
with or ig in  inside the contact region s. The XOY plane 
coincides with the common ficti t ious plane boundary 
of the rubbing bodies.  

Within each of the par t s  the axes z i ,  z 2 have the 
same  d i rec t ion  as the inward normal s  to the boundary 
sur face  between the neck of the shaft and the bear ing.  

With the above assumpt ion concern ing  the p r e s -  
ence of a continuous hea t -genera t ing  layer  between 

the rubbing par ts ,  the following re la t ions  must  be 
sa t is f ied [2]: 

1) within the region s the t empe ra tu r e s  of the par ts  
a re  equal, i . e . ,  

T1 = T~, (1) 

2) the sum of the specific heat flows into the bear ing  
qt and the shaft q2 generated at any point of the heat -  
genera t ing  layer  is equal to the specific f r ic t ion  power 
at that point, i . e . ,  

ql + q, -- u ~  _/r (2) 
, ] 

In the absence of in te rna l  heat sources  and provided 
that the thermophys ieal cha rac te r i s t i c s  of the ma te r i a l s  
do not depend on t e mpe r a t u r e  and p r e s su r e ,  the heat 
conduction equation descr ib ing  the t empera tu re  d i s t r i -  
bution in the bear ing  and shaft has the form 

1 OTi - - v ~ T i  (1=1,  2), 
a i Ot 

where 
a i _  ~'i , V 2 -  Os 0"~ 02 

ci Y i Ox~ + - -  -~- - -  Oy ~ OP 

(3) 

The boundary condition at the ini t ia l  ins tant  of t ime  
t = 0 is wri t ten  thus:  

Tj = Tj (x, U, z). 

Since in the contact region s Eqs. (1) and (2) hold, 
in the coordinate sys tem adopted the boundary con-  
ditions for that region are expressed  as follows: 

Formation of  
I inhomogeneity I ] Solution of  i-th I 

/ �9 ( k - &  ~ stage Fredholm I 

l qk  1 

E v a l u a t e - - [  I 

END 

Fig.  1. Block d iag ram of p r og r a m for solving in tegra l  equation 
of the second kind. 



JOURNAL OF ENGINEERING PHYSICS 349 

5Ix tOOK IOOx 

__--- , ,( ,FlO ] [~oo. 

i 

Fig. 2. Block d iagram of analog simulat ion of integral  equation 
of the second kind. 

Tx (x, y + O; t) = T~ (x, V + O; t), 

Xt ~ ( x ,  y + O ;  t ) + k ~  OT__~ (x, y + O ;  t ) =  
Oz~ 

U'g 

i 

The prob lem will be solvedfor  the case  when, apar t  
f rom time, the t empera tu re  T i depends only on two 
coordinates (x, z). This is because  in long cyl indr ical  
regions (bearings) the th ree-d imens iona l  thermal  
p rocesses  can be reduced to plane p r o c e s s e s  without 
ser ious  loss of accuracy  [3]. Thus for  the plane case  
Eq. (5) becomes  

OT~ u ~ (x, + o; t) + ~ ~ (x, + o; t) = - -  - -  
i 

(4) 0 e x p [  ~ I d a .  
x 0---~ 4a] (t --. ~) 

(5) 

Since the bear ing and shaft  a re  usually made of 
different mater ia ls ,  we must  consider  the region s as 
a region of contact  between two heterogeneous media 
in and between which heat is propagated.  In a c c o r -  
dance with [3], at such a boundary there  is a thermal  
discontinuity. In o rder  to ensure  the continuity of the 
thermal  layer  in the contact region, we make it a 
double region and dispose along the boundaries a 
single thermal  layer  on one side and a double the rmal  
layer  on the other.  

In this formulat ion of the problem the determinat ion 
of the t empera tu re  Tl(x, z 1) and T2(x, z~.) reduces  to the 
corresponding p rob lem of potential theory  which, to-  
gether  with conditions (3) and (4), makes it possible  
to represent  the unknown tempera tu res  in the fo rm of 
single and double- layer  potentials:  

Tz (x, zl) = 
t 

, 2 ~  ( t  - -  ~) 4a] ( t  - -  ~) 
o I 

$ 

0 I 

Hence we obtain the unknown value of the t empera tu re  
at selected points of the region s f rom a Vol t e r ra -  
Fredholm type integral  equation of the second kind: 

t 

f ( x p t ) : ~ ( X ' t ) ' ~ - S d T I O  • 

~ [ + ~ n  exp --P% d g +  

Pe 
+ - ~ - f ; q D ( g ,  ~ )x  

• exp - -Pe  d~d,q. (6) 

Here, ~ is the coordinate of the var iable  point in the 
region;  qh(~, t) the unknown single and double- layer  
potential densit ies;  r i = (x - ~)~ + z~) 1/2 the distance 
f r o m  some point (x, z i) to a point (~) in the region s. 
The last  t e r m  on the r ight  s ide of Eq. (6) charac te r i zes  
the initial condition [3]. 

Since nor reals to the planes bounding the bear ing 
and the shaft a re  paral le l  and have the same direct ion 
as the z -axes ,  using (6) and the known proper t ies  of 
the normal  der ivat ive of single and double layers ,  
f rom boundary condition (5) we obtain 

%(x, ~) + q%(x, ~) = - -  u r (6a) 
] 

Hence it follows that the potential densit ies ~oi(x , T) 
a re  nothing other than the ra tes  of heat flow into each 
of the rubbing par t s  in the region s f rom the moment  
of action ~-. 
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These  r a t e s  a r e  ea s i l y  found us ing boundary con-  
di t ions  (1) and Eqs. (6) and (6a): 

r ) _ ~ u~ ( i =  1, 2). 
~ l + X ~  ] 

F o r  s i m p l i c i t y ,  the  p r o b l e m  was f i r s t  so lved  on the 
a s sumpt ion tha tX  i = ~2, a I = a2, and that  the P e c l e t  
number s  for  each p a r t  were  constant  and equal Pe  1 = 
= l~ --- 1. Moreover ,  it  was a s sumed  that the l as t  t e r m  
on the r igh t  s ide  of Eq. (6) was equal to ze ro .  This 
assumpt ion  can be made without loss  of gene ra l i t y  
s ince  in the  event of a nonzero  ini t ia l  condit ion the 
p r o b l e m  can be t r a n s f o r m e d  to the  above-ment ioned  
fo rm (6). 

As a r e s u l t  we obtain the  equation 

f (x, t) - qo (x, t) + 

J~ f (x, t, ~, ~) [ (x--g?] + d z qo exp d ~. 

0 l 

(7) 

The funct ionf(x ,  t) is  the heat  flux in the contact  r e -  
gion. This function is known; it is  p ropor t iona l  to the 
f r i c t i on  power .  The function r  is  the t h e r m a l  
l a y e r  so d i s t r i bu t ed  in the contact  reg ion  that  the 
boundary condit ion is sa t i s f ied ;  ~0(~,T) is the unknown 
dens i ty  of the t h e r m a l  l aye r ,  which makes  i t  pos s ib l e  
to find the t e m p e r a t u r e  d i s t r ibu t ion  at any point  x, z 
at a n y t i m e t ,  i. e . ,  the dens i ty  opera t ing  at t ime  ~ at 
the point  ( ~, V) when this  ac t ion with r e s p e c t  to t ime  t 
is  cons ide red  at points  (x, z); 

t 

r(~, 0 =  j' d~ ,l~(~, t, t, ~)~(~, :)d~. 
0 l 

The method used  to so lve  the given V o l t e r r a -  
F r e d h o l m  equation of the second  kind may  be divided 
into two d i s t inc t  s t ages :  

1) solut ion of a F redho lm equation of the second 
kind wr i t t en  for  some moment  of t ime  tj ; 

2) de t e rmina t ion  of the aux i l i a ry  quant i t ies  used  
as  inhomogenei ty  function (see Fig .  1). 

The t ime  in te rva l  (0,t) is  d ivided into n equal p a r t s  
with s tep h = t /n .  

The f i r s t  in tegra l  in Eq. (7) is  a f ini te  sum c a l -  
culated,  for  example ,  in acco rdance  with the r ec t ang le  
fo rmula .  As a r e su l t  we obtain 

h ( x ) = ~ ( x ) +  

~ ,  ! % ( x '  ~) exp[ ( x - - ~ ) ~ ] d ~ .  (8) 
+ h h(i--k~ - -h ( i - -k )  

This equation may  be t r a n s f o r m e d  as  fol lows:  

"i I ~=~ l i - - k  h ( i - - k )  

l 

(9) 

In Eqs.  (8) and (9) 

h ( x )  = f ( x ,  tO, 

~ (x) = ~ (x, t~), 

% (x, ~) = ~ (x, ~, t~), 

t 
ti  = i - - .  

Equation (9) was obtained f rom (8) by i so la t ing  the 
i - th  t e r m  in the e x p r e s s i o n  for  the sum. Genera l ly  
speaking,  this  t e r m  of the sum is degene ra t e  owing 
to the s ingu la r i t y  of the ke rne l  of Eq. (7). To be 
spec i f ic ,  we will  cons t ruc t  the i - th  t e r m  as  fol lows:  
the in tegrand  function ~o is  taken for  t i ,  and the ke rne l  
for  t i - 1 .  Since the ke rne l  is continuous in the ne igh-  
borhood of the s ingu la r i ty  point,  the  e r r o r  obtained is 
f ini te  and can be made  suff ie ient ly  s m a l l  given a s u i t -  
able  choice  of the step h. 

Equation (9) is  a nonhomogeneous F r e d h o l m  equa-  
t ion of the second kind which can be solved by s imp le  
i t e ra t ion .  The j - th approx ima t ion  to the solut ion of th is  
equation is  fo rmed  f rom the r e s u l t s  of the ( j -1)- th  
approx ima t ion  acco rd ing  to the  fol lowing fo rmula :  

~7~(x) = 
i - -z  1--1 

k=1 i - -  k h (i - -  k) 
l 

l 

An i t e r a t i ve  p r o c e d u r e  of th is  type was c a r r i e d  out 
on a s t anda rd  type MN analog compute r  us ing magnet ic  
d rum s to rage .  Thus, as a l r e a d y  indicated,  in each 
s tep we so lved  Eq. (10) and eva lua ted  the e x p r e s s i o n s  

~r (x, ~) exp [ (x - -  0 2 
h ]dg ,  

l 

1 

l 

n - - i - - 1  . %(x, ~)exp h ( a - - i - - l )  
l 

which a r e  used for  fo rming  the r igh t  s ides  of the 
F r e d h o l m  equations for  the subsequent  t ime  l a y e r s .  

This method makes  pos s ib l e  a quite convenient  in -  
ves t iga t ion  of the na tu re  of the solut ion fo r  inhomo-  
gene i t ies  of va r ious  fo rms  (function f (x ,  t)). We 
examined the two c a s e s  

i) f(x, t) = 1 - -exp [--0.3t], 

2) f(x, t) = sint, 

which d e t e r m i n e  the nons ta t ionary  na tu re  of the f r i c t ion  
contact  f ( x ,  t) ~ uv / j .  

The block d i a g r a m  of the  analog s imula t ion  of heat  
genera t ion  at a nons ta t ionary  s l id ing  contac t  (in a c -  
co rdance  with Eq. (7)) is shown in F ig .  2. 
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Fig.  3. Graph ic  r e p r e s e n t a t i o n  of so lu t ion  of t h e r m a l  p r o b l e m :  a) fo r  the c a s e  f ( x ,  t) = I - e x p [ - 0 . 3 t ] ;  
b) for  the  c a s e  f ( x ,  t) = s in  t. 
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The results of the solution are presented in Fig. 3a 
for the case f(x, t)  = 1 -  exp[ - 0:3t], and in Fig. 3b 
for the case f(x, t )  --sin t. 

NOTATION 

is the thermal conductivity, kcal /m - hr . deg; c 
is the specific heat, J /kg  �9 ~ 7 is the specific weight, 
kg/m3; T is the temperature of the simulated medium, 
~ q is the heat flux, kcal /m ~ �9 hr; u is the relative 
sliding velocity at a given point of the contact region 
s, m/sec;  T is the shear s t ress  at th e same point; j is 
the mechanical equivalent of heat, J /cal ;  a is the 
thermal diffusivity, m~/hr; Pe is the Peclet number. 
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