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The temperature at a nonstationary sliding friction contact is de~
termined with the aid of a Volterra~Fredholm type integral equation
of the second kind. In order to solve this equation on a standard ana-
log computer transformations necessary to permit the use of the method
of successive approximations are introduced.

In evaluating the wear resistance, antiseizing prop-
erties, and surface strength of rubbing parts it is
very important to know the temperature distribution
in the parts and, in particular, the temperature at the
sliding contact itself.

The discrete elements of the actual contact area
are the sources of friction heat. I for the purposes
of simplification these discrete elements are replaced
with continuous surface layers and these boundary
layers are treated as a single heat-generating layer,
then the thermal problem can be represented in in-
tegral form with a particular solution in the form of
single and double-layer potentials. This representation
makes it possible to use not only the methods of
mathematical physics but also mathematical simu-
lation on an analog computer.

Let the rubbing parts consist of a slider bearing
and a rotating shaft. This system is formalized as
two cylindrical half-spaces in contact along the gener-
ators. The heat source is the contact region s
created by very thin surface layers of the bearing
and the neck of the shaft in the area of contact. The
contact region s moves at constant speed. The contact
is nonstationary. This nonstationarity is due either
to the nonstationarity of the relative slip velocity u or
to the nonstationarity of the shear stress 7 or to the
nonstationarity of u and 7 together [1].

The thermophysical characteristics of the rubbing
materials are assumed to be different, i.e., thether-
mal conductivities of the bearing and shaft materials
are not equal (A, #A,), just as their specific heats
{c; = c,) and specific weights (y; =7;) are different.
There are no heat losses to the ambient medium, i.e.,
the noncontacting surfaces are adiabatic,

It is required to determine the temperature T di-
rectly at the sliding contact and the temperature
distribution over the rubbing parts.

We will select a rectangular coordinate system
with origin inside the contact region s. TheXQY plane
coincides with the common fictitious plane boundary
of the rubbing bodies.

Within each of the parts the axes z;, z, have the
same direction as the inward normals to the boundary
surface between the neck of the shaft and the bearing,

With the above assumption concerning the pres-

ence of a continuous heat-generating layer between
the rubbing parts, the following relations must be
satisfied [2]:

1) within the region s the temperatures of the parts

are equal, i.e.,

T, =T, (1)

2) the sum of the specific heat flows into the bearing
gq; and the shaft q, generated at any point of the heat-
generating layer is equal to the specific friction power
at that point, i.e.,
LA @)
I

G+ g, =
L1

In the absence of internal heat sources and provided
that the thermophysical characteristics of the materials
do not depend on temperature and pressure, the heat
conduction equation describing the temperature distri-
bution in the bearing and shaft has the form

1 aT; 2 .
=T, =1, 2), (3)
o o vT; ( )
where
7"' 02 6'2 62
a: = i y=
! & Y; v ox? + oy* + 0z*

The boundary condition at the initial instant of time
t =0 is written thus:

T;=T;(, y, 2)-
Since in the contact region s Eqs. (1) and (2) hold,

in the coordinate system adopted the boundary con-
ditions for that region are expressed as follows:
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Fig. 1. Block diagram of program for solving integral equation
of the second kind.
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Fig. 2. Block diagram of analog simulation of integral equation
of the second kind,

Ti(x y+0; ) =To(x, y+0; O )
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The problem will be solvedfor the case when, apart
from time, the temperature T; depends only on two
coordinates (x,z). This is because in long cylindrical
regions (bearings) the three-dimensional thermal
processes can be reduced to plane processes without
serious loss of accuracy [3]. Thus for the plane case
Eq. (5) becomes

0T1 0T, uT

(x +0; f) = ——.
1

M u +0; )+ Ay

Since the bearing and shaft are usually made of
different materials, we must consider the region s as
a region of contact between two heterogeneous media
in and between which heat is propagated. In accor-
dance with {3], at such a boundary there is a thermal
discontinuity. In order to ensure the continuity of the
thermal layer in the contact region, we make it a
double region and dispose along the boundaries a
single thermal layer on one side and a double thermal
layer on the other.

In this formulation of the problem the determination
of the temperature Ty(x, zy) and T,(x, z;) reduces to the
corresponding problem of potential theory which, to-
gether with conditions (8) and (4), makes it possible
to represent the unknown temperatures in the form of
single and double~layer potentials:

Ti(x ) =
¢ 2
) J (- 4aj (t — 1) '

3
T2 , ) = * (P2(E’ T)
= [ae [ 2,

0 l

9 exp [——
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Hence we obtain the unknown value of the temperature

at selected points of the region s from a Volterra-
Fredholm type integral equation of the second kind:
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Here, £ is the coordinate of the variable point in the
region; ¢y(£,t) the unknown single and double-layer
potential densities; r; = (x —£)? + z1)1/2 the distance
from some point (x, zj) to a point () in the region s.
Thelasttermontherightsideof Eq. (6) characterizes
the initial condition [3].

Since normals to the planes bounding the bearing
and the shaft are parallel and have the same direction
as the z~axes, using (6) and the known properties of
the normal derivative of single and double layers,
from boundary condition (5) we obtain .

P1 (%, ©) + Qal%, r>~—”7"'. (6a)

Hence it follows that the potential densities ¢i(x, 1)
are nothing other than the rates of heat flow into each
of the rubbing parts in the region s from the moment
of action .
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These rates are easily found using boundary con-
ditions (1) and Egs. (6) and (6a):
M ET L, )

P; x) =
( Mt Ae

For simplicity, the problem was first solved on the
assumptionthatA; =A,, a; = a,, and that the Peclet
numbers for each part were constant and equal Pe; =
=Pe, =1, Moreover, it was assumed that the last term
on the right side of Eq. (6) was equal to zero, This
assumption can be made without loss of generality
since in the event of a nonzero initial condition the
problem can be transformed to the above-mentioned
form (6).

As a result we obtain the equation

flx, h =¢lx, )+

+5‘ drjw exp[;_(_xt:ii}dg, ™
7

t—1 T

The function f(x, t} is the heat flux in the contact re-
gion, This function is known; it is proportional to the
friction power. The function ¢(x,t) is the thermal
layer so distributed in the contact region that the
boundary condition is satisfied; ¢(£,7) is the unknown
density of the thermal layer, which makes it possible
to find the temperature distribution at any point %, z
at anytimet, i, e., the density operating at time 7 at
the point (£, n) when this action with respect to time t
is considered at points (%, z);

¢
T(r, t)=b§ dv .l§(p(x, g, 4, )r(x E)dE.

The method used to solve the given Volterra-
Fredholm equation of the second kind may be divided
into two distinct stages: .

1) solution of a Fredholm equation of the second
kind written for some moment of time ty;

2) determination of the auxiliary quantities used
as inhomogeneity function (see Fig. 1).

The time interval (0,t) is divided into n equal parts
with step h =t/n,

The first integral in Eq. (7) is a finite sum cal-
culated, for example, in accordance with the rectangle
formula. As a result we obtain

fi(x) =@ (x) +

S5 (et ® [ (x—Ep
+h Zl jhm(i—k) exp[ hm(i—k)] de. (8)

This equation may be transformed as follows:

i1 p
. Pe (%, &) _(x —¢&)y —
Fi(0) ;:1: lj Bt Doy - Pt e

=q;(x) + g @, (%, E) exp [~3—;—§)Z] dE. (9)
; ]

INZHENERNO-FIZICHESKII ZHURNAL

In Egs. (8) and (9)
fi (x) = f(x’ ti)1
(Pi (x) = q) (xi ti):

P (X, B)=q(x, E 1),

.t

t, =i

n

Equation (9) was obtained from (8) by isolating the
i-th term in the expression for the sum. Generally
speaking, this term of the sum is degenerate owing
to the singularity of the kernel of Eq. (7). To be
specific, we will construct the i-th term as follows:
the integrand function ¢ is taken for ti, and the kernel
for ti_,. Since the kernelis continuous in the neigh-
borhood of the singularity point, the error obtained is
finite and can be made sufficiently small given a suit-
able choice of the step h.

Equation (9) is a nonhomogeneous Fredholm equa-
tion of the second kind which can be solved by simple
iteration. The j-th approximation to the solution of this
equation is formed from the results of the (j-1)-th
approximation according to the following formula:

B q)(il‘)(x) =

jml 1
i Ve [ =
- X 5 b Bap | — |0

—j ; (¥, &) exp {~—(x—;-ﬁ] de. (10)

H

An iterative procedure of this type was carried out
on a standard type MN analog computer using magnetic
drum storage. Thus, as already indicated, in each
step we solved Eq. (10) and evaluated the expressions

jcpi(x, £) exp [—i"—;—a—z]da,
I

L B et
gcp,(xii)eXP[ R —i D)

] &, (1)

¥

which are used for forming the right sides of the
Fredholm equations for the subsequent time layers.

This method makes possible a quite convenient in-
vestigation of the nature of the solution for inhomo-
geneities of various forms (function f(x,t)). We
examined the two cases

1) f(x, )y =1—exp [—0.3¢],
2) f(x, t)=sint,

which determine the nonstationary nature of the friction
contact f(x,t) ~ ur/j.

The block diagram of the analog simulation of heat
generation at a nonstationary sliding contact (in ac-
cordance with Eq. (7)) is shown in Fig, 2.
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Fig. 3. Graphic representation of solution of thermal problem: a) for the case f(x,t) = 1 — exp[—0.3t];
b) for the case f(x,t) = sin t.
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The results of the solution are presented in Fig. 3a
for the case f(x,t) =1— exp[ — 0.3t], and in Fig, 3b
for the case f(x,t) =sin t.

NOTATION

A is the thermal conductivity, kcal/m « hr - deg; ¢
is the specific heat, J/kg+°K; v is the specific weight,
kg/m3; T is the temperature of the simulated medium,
°K; q is the heat flux, kecal/m? - hr; u is the relative
sliding velocity at a given point of the contact region
s, m/sec; 7 is the shear stress at the same point; j is
the mechanical equivalent of heat, J/cal; a is the
thermal diffusivity, m?/hr; Pe is the Peclet number.
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